Ca2+ influx into lily pollen grains through a hyperpolarization-activated Ca2+-permeable channel which can be regulated by extracellular CaM.
نویسندگان
چکیده
Confocal laser scanning microscopy (CLSM) and whole-cell patch-clamp were used to investigate the role of Ca2+ influx in maintaining the cytosolic Ca2+ concentration ([Ca2+]c) and the features of the Ca2+ influx pathway in germinating pollen grains of Lilium davidii D. [Ca2+]c decreased when Ca2+ influx was inhibited by EGTA or Ca2+ channel blockers. A hyperpolarization-activated Ca2+-permeable channel, which can be suppressed by trivalent cations, verapamil, nifedipine or diltiazem, was identified on the plasma membrane of pollen protoplasts with whole-cell patch-clamp recording. Calmodulin (CaM) antiserum and W7-agarose, both of which are cell-impermeable CaM antagonists, lead to a [Ca2+]c decrease, while exogenous purified CaM triggers a transient increase of [Ca2+]c and also remarkably activated the hyperpolarization-activated Ca2+ conductance on plasma membrane of pollen protoplasts in a dose-dependent manner. Both the increase of [Ca2+]c and the activation of Ca2+ conductance which were induced by exogenous CaM were inhibited by EGTA or Ca2+ channel blockers. This primary evidence showed the presence of a voltage-dependent Ca2+-permeable channel, whose activity may be regulated by extracellular CaM, in pollen cells.
منابع مشابه
Identification and characterization of stretch-activated ion channels in pollen protoplasts.
Pollen tube growth requires a Ca2+ gradient, with elevated levels of cytosolic Ca2+ at the growing tip. This gradient's magnitude oscillates with growth oscillation but is always maintained. Ca2+ influx into the growing tip is necessary, and its magnitude also oscillates with growth. It has been widely assumed that stretch-activated Ca2+ channels underlie this influx, but such channels have nev...
متن کاملRegulation of gene expression in hippocampal neurons by distinct calcium signaling pathways.
Calcium ions (Ca2+) act as an intracellular second messenger and can enter neurons through various ion channels. Influx of Ca2+ through distinct types of Ca2+ channels may differentially activate biochemical processes. N-Methyl-D-aspartate (NMDA) receptors and L-type Ca2+ channels, two major sites of Ca2+ entry into hippocampal neurons, were found to transmit signals to the nucleus and regulate...
متن کاملUp-regulation of pressure-activated Ca(2+)-permeable cation channel in intact vascular endothelium of hypertensive rats.
In endothelial cells, stretch-activated cation channels have been proposed to act as mechanosensors for changes in hemodynamic forces. We have identified a novel mechanosensitive pressure-activated channel in intact endothelium from rat aorta and mesenteric artery. The 18-pS cation channel responded with a multifold increase in channel activity when positive pressure was applied to the luminal ...
متن کاملVoltage-dependent calcium-permeable channels in the plasma membrane of a higher plant cell.
Numerous biological assays and pharmacological studies on various higher plant tissues have led to the suggestion that voltage-dependent plasma membrane Ca2+ channels play prominent roles in initiating signal transduction processes during plant growth and development. However, to date no direct evidence has been obtained for the existence of such depolarization-activated Ca2+ channels in the pl...
متن کاملControl of Ca2+ Influx and Calmodulin Activation by SK-Channels in Dendritic Spines
The key trigger for Hebbian synaptic plasticity is influx of Ca2+ into postsynaptic dendritic spines. The magnitude of [Ca2+] increase caused by NMDA-receptor (NMDAR) and voltage-gated Ca2+ -channel (VGCC) activation is thought to determine both the amplitude and direction of synaptic plasticity by differential activation of Ca2+ -sensitive enzymes such as calmodulin. Ca2+ influx is negatively ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 46 4 شماره
صفحات -
تاریخ انتشار 2005